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Abstract. Uniqueness up to isomorphism, of the Moyal product and bracket of functions on
R2n as associative and Lie deformations of the ordinary product and Poisson bracket, is known
to follow under additional hypotheses. Using an integral formalism we show here that this result
holds without these hypotheses.

1. Introduction

It is well known that quantum operators can be mapped to phase-space functions and vice
versa, in many different ways, depending on the ordering rule chosen for the operator
to which the monomialqnpm is mapped (see e.g. [1]). Originally this was done by
the Weyl transformation corresponding to a symmetric ordering [2]. The inverse of
this mapping, the Wigner transformation, was originally devised in order to formulate
quantum expectation values as classical averages on the phase space0 of the system
under consideration [3]. Since the work of Moyal [4], who showed the relation between
these two mappings, many other ordering rules have been considered (see e.g. [5, 6]),
corresponding to some generalization of the Wigner transformation, or equivalently, of the
Weyl symmetric ordering,depending on the physical problem under consideration(see e.g.
[5] for a discussion of the advantages of different choices of ordering in different problems).
This is due to the fact that such transformations (see (1.1) and (1.2) below) make possible
a phase-space formulation of quantum theory, which has been proved to be convenient in
a wide variety of domains: from quantum optics [7], kinetic and transport theory [8], and
scattering problems ([9, 5 section 11.1] and references therein), to string theory [10], and the
study of chaotic and ergodic behaviour in quantum systems ([5] section 11.2 and references
therein). A large class of such transformations is given by (e.g. [1, 11])§

�g:A(q,p)→ �g(A) = Â:= 1

(2π)n

∫
dσ �(σ)Ã(σ ) eiσ ·ẑ (1.1)

where we use the following notation: phase-space coordinates(q,p) =: z; corresponding
quantum operators(q̂, p̂ = −ih̄(∂/∂q)) =: ẑ; quantum mechanical operatorsÂ; phase-space
functionsA(q,p); Fourier transform

Ã(η, ξ) = 1

(2π)n

∫
dz e−iσ ·zA(z) σ = (η, ξ).

§ It can be shown that any linear transformation of quantum operators to phase-space functions, which is phase-
space translation invariant is the inverse of (1.1). The calculations will not be given here, but see [12], (15).
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Here and in what follows we consider a 2n-dimensional flat phase-space,0 = R2n where
σ · z denotes its scalar product, and�(σ) is assumed to be an entire analytic function ofσ

without zeros. Then�−1
g exists formally and in Dirac notation it is given by

�−1
g : Â→ A(q,p) = 1

πn

∫
dq′ dp′ dt e−p

′·t/µω(q − q′,p− p′)〈q′ − t|Â|q′ + t〉 (1.2)

where

ω(z):= 1

(2π)n

∫
dσ

eiσ ·z

�(σ)
µ:= ih̄

2
. (1.3)

For � = 1, (1.1) and (1.2) give the Weyl and Wigner transformations respectively ([2, 3])
so that in the general case we may call them generalized Weyl and Wigner transformations
(GWT) respectively. Sometimes,A in (1.2) is called a smoothed Wigner distribution,
corresponding toÂ with smoothing kernelω, since it has all the basic properties of a
Wigner distribution under quite general conditions (by (1.2)A is the convolution ofω with
the Wigner transform ofÂ). Therefore such distributions have also been considered in
quantum statistical mechanics, especially in connection with the question of whether they
can be interpreted as probability densities whenÂ is a density matrix, specifically if they
are non-negative (a condition violated in general by Wigner distributions) [13].

On the other hand, it is well known that a GWT induces on the vector space ofC∞

phase-space functionsF(0), the structure of an associative, in general non-Abelian algebra,
and of a Lie algebra via

f ?� g:= �−1
g (�g(f )�g(g)) (1.4)

[f, g]�:= 1

2µ
(f ?ω g − g ?� f ) (1.5)

respectively, withf, g ∈ F(0). For � = 1 (1.4) and (1.5) give the Moyal product and
bracket denoted by?, [, ], [4]. In the classical limitµ→ 0, the latter reduces to the Poisson
bracket.

Equations (1.4) and (1.5) can explicitly be written as

(f ?� g)(z) = 1

(2π)2n

∫
dσ dσ ′f̃ (σ )g̃(σ ′)B(σ, σ ′) ei(σ+σ ′)·z (1.6)

[f, g]�(z) = 1

(2π)2n

∫
dσ dσ ′f̃ (σ )g̃(σ ′)A(σ, σ ′) ei(σ+σ ′)·z (1.7)

where

B(σ, σ ′) = �(σ)�(σ ′)
�(σ + σ ′) eµσ

′∧σ (1.8)

A(σ, σ ′) = �(σ)�(σ ′)
�(σ + σ ′)

sinh(µσ ′ ∧ σ)
µ

(1.9)

with σ ′ ∧ σ := Jijσ ′iσ j , whereJij is the canonical symplectic matrix ofR2n, that is

J =
(

0 (δij )

−(δij ) 0

)
.

These imply that the mappingU ,

f → Uf : (Uf )(z) =
∫

dσ �(σ)f̃ (σ ) eiσ ·z (1.10)
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is an algebra and Lie-algebra isomomorphism of(F (0), ?�, [, ]�) and(F (0), ?, [, ])†.
Therefore, although (1.6) and (1.7) define binary operations of functions in classical

phase-space with different physical interpretations that are very useful in various problems
of quantum physics (see the previous references), the underlying abstract algebraic structure
is independent of�. Thus the question naturally arises,whether more general binary
operations are defined via (1.6) and (1.7), which are respectively an associative product and
a Lie product and for which the corresponding kernels are not of the form (1.8) and (1.9)
and if so, to characterize the corresponding algebras.

It is the aim of this paper to study this problem in its general form. Special cases have
been treated in the literature. To see this,we introduce the notation?B , [, ]A for (1.6) and
(1.7) with B, A not given a prioriby (1.8) and (1.9), assuming that

(i) B, A are entire analytic functions of their arguments andB has no zeros, so that for
some entire functionb(σ, σ ′) with bs(σ, σ ′) (respectivelyba(σ, σ ′)) symmetric (respectively
antisymmetric) part

B(σ, σ ′) = eb(σ,σ
′) = ebs (σ,σ

′) eba(σ,σ
′) (1.11)

(ii) constants are in the centre of the Lie algebra, i.e.

[f, 1]A = 0 for all f ∈ F(0). (1.12)

DevelopingA in a power series, we formally get

[f, g]A(z) =
+∞∑
r=1

+∞∑
s=1

r∑
j=0

s∑
k=0

brj,sk(∂
j
q ∂

r−j
p f )(∂kq ∂

s−k
p g) (1.13)

wherer, s, j, k ∈ Nn are differentiation indices, each sum abbreviates ann-fold summation
andbrj,sk are given in terms of the derivatives ofA at 0. A similar expression is obtained
for f ?B g.

For b a polynomial, a characterization of the?B-algebras has been given by Vey ([14]
section 1), which shows that in this case(1.8) is essentially unique. In section 2 and
appendix Awe will showby elementary means, thatthis result remains valid whenb is an
entire function.

Vey also considered on arbitrary symplectic manifolds, deformations of the Poisson–Lie
algebra ofC∞-functions for which

brj,sk =
{

0 for |r| 6= |s| or |r| = |s| = 2m

λmb2m+1,jk for |r| = |s| = 2m+ 1 λ ∈ C (1.14)

with |r| = r1+ · · ·+ rn etc so that the coefficient ofλm in (1.13) is a bidifferential operator
of odd order with principal symbol identical to that of the Poisson bracket defined by
the symplectic structure (Vey deformations [14], section 4, [15], p 74, [16], section 7).
He showed that such essential (i.e. non-isomorphic to the original Poisson–Lie algebra)
deformations exist as long as the third de Rahm cohomology is trivial([14], p 446). This
restriction was later removed ([17]). On the other hand Lichnerowicz, Flato, Sternheimer

† From this it follows that a necessary and sufficient condition for [, ]� to reduce to the Poisson bracket, given

that (q,p)
�g→(q̂, p̂), is that limµ→0�(σ) = �0 = 1. Then

lim
µ→0

A(σ, σ ′) = �0(σ )�0(σ
′)

�0(σ + σ ′) σ
′ ∧ σ

and (1.10) with�0, replacing�, is a Lie algebra isomorphic with the Poisson Lie algebra. We may call such
algebrasgeneralized Poisson Lie algebras, and consider them as limits of generalized Moyal algebras. We agree
to include them in (1.9) forµ = 0, and for the sake of brevity we will use only the term Moyal Lie algebra.



4860 C Tzanakis and A Dimakis

and coworkers proved thatif the manifold admits a flat symplectic connection (e.g.R2n), then
the only non-trivial such deformation which is a formal function of the corresponding Poisson
bracket, is the Moyal bracketdefined via the symplectic structure and this connection ([18],
theorem 1, [15], theorem 5, [16], section 6).The restriction to the algebra of polynomials
with complex coefficients in a symplectic vector space, implies that a sufficient condition
for the deformation to be a function of the Poisson bracket, is thatthe deformed bracket is
invariant under all affine contact transformations([19], theorem 1.3), hence the uniqueness
of the Moyal bracket follows again ([19], theorem 2.11). A similar uniqueness result holds
for associative deformations as well ([19], theorem 3.5). The uniqueness of the Moyal
bracket as a deformation of the Poisson bracket was shown to hold without the above
conditions, only in the case ofR2, by substituting (1.13) to the Jacobi identity and solving
the resulting recurrence relations for thebs ([20]; however, the proof was made explicit
only under (1.14) and it does not seem to be easily generalized inR2n since the calculations
become too complicated).

To the best of our knowledge, further work in this field has been concerned mainly with
the development of analytical aspects of the Moyal structure of appropriately defined spaces
of functions or distributions and applications to quantum physics; for instance, the phase-
space description of spin systems [21], the quantization of classical conditionally periodic
systems [22] or, more generally, of systems with a non-Euclidean phase space, [23, 34].

However important, the above beautiful considerations leave unanswered thegeneral
question of the characterization of the [, ]A-algebras inR2n, since theypresupposeon the one
hand the existence of a symplectic structure on the manifold and on the other hand (1.14). It
is perhaps interesting thatthe existence of a symplectic form and the invariance of the[, ]A-
bracket under the corresponding symplectic group follow from the Jacobi identity alone, i.e.
that the latter alone implies thatA in (1.7) is given by (1.9), hence (up to isomorphism)
uniqueness of the Moyal bracket follows as well. This is the subject of section 3.

More precisely, using (1.6) and (1.7) we get

f ?B (g ?B h)(z) = 1

(2π)3n

∫
dσ dσ ′ dσ ′′ ei(σ+σ ′+σ ′′)·z

×B(σ ′′, σ ′)B(σ ′′ + σ ′, σ )f̃ (σ )g̃(σ ′)h̃(σ ′′)
[f, [g, h]A]A(z) = 1

(2π)3n

∫
dσ dσ ′ dσ ′′ ei(σ+σ ′+σ ′′)·z

×A(σ, σ ′ + σ ′′)A(σ ′, σ ′′)f̃ (σ )g̃(σ ′)h̃(σ ′′)
hence associativity and the Jacobi identity are respectively found to be equivalent to

B(σ, σ ′)B(σ + σ ′, σ ′′) = B(σ, σ ′ + σ ′′)B(σ ′, σ ′′) (1.15)

A(σ, σ ′ + σ ′′)A(σ ′, σ ′′)+ A(σ ′, σ ′′ + σ)A(σ ′′, σ )+ A(σ ′′, σ + σ ′)A(σ, σ ′) = 0 (1.16)

A(σ, σ ′) = −A(σ ′, σ ). (1.17)

In the rest of the paper we show by quite simple (sometimes even elementary) methods that
essentially the only solutions of these functional relations are respectively (1.8) and (1.9).
Thus, up to isomorphism, the uniqueness of the Moyal product and bracket is proved in a
more general setting than previously.

2. The characterization of the?B-algebras

In this section we will show that (1.15) essentially implies (1.8)—the converse is trivial.
Starting from (1.11), we may remark that the special case whenb is a polynomialwithout
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constant term, was considered long ago by Vey, who showed using cohomological arguments
that ba is necessarily bilinear and that it determines uniquely such a?B-algebra, up to
isomorphism ([14], section 1, proposition 2 and its corrolary).

In the following, using similar arguments,we show that the restriction to a polynomial
function forb is not necessary. In fact, if we consider the extensionE of the translation
group(R2n,+) by the multiplicative groupC∗:= C− {0}, i.e. a short exact sequence

1→ C∗ → E→ R2n→ 0

then by writing(σ, ζ ) for an element ofE and defining

(σ, ζ )(σ ′, ζ ′):= (σ + σ ′, B(σ, σ ′)ζ ζ ′) (2.1)

we see that associativity of (2.1) is equivalent to (1.15) (cf [25], section 6.10, [14], (4), [10],
(6)). Thus the determination ofB, or for that matterb, is equivalent to the determination
of all equivalence classes of extensions of(R2n,+) by C∗, which is in 1–1 correspondence
with the second cohomology groupH 2(R2n,C∗) (e.g. [25], theorem 6.15). In fact given
(1.11), equation (1.15) becomes

b(σ ′, σ ′′)− b(σ + σ ′, σ ′′)+ b(σ, σ ′ + σ ′′)− b(σ, σ ′) = 0. (2.2)

It is not difficult to see that sinceR2n acts trivially onC∗, (2.2) says thatb is a coboundary
(δb)(σ, σ ′, σ ′′) = 0 of the complexC(R2n,C∗) of complex-valued functions without zeros,
on (R2n)k, k = 0, 1, 2, . . . . Thus b is determined up toδχ , for someχ ∈ C1(R2n,C∗).
Evidently

(δχ)(σ, σ ′) = χ(σ ′)− χ(σ + σ ′)+ χ(σ). (2.3)

In view of the above remarks, isomorphic classes of?B-algebras are in 1–1 correspondence
with the elements ofH 2(R2n,C∗). It is interesting to notice that(2.2) can be solved by
elementary means. This is done in appendix A, where we show thatbs = δχ for some 1-
cochainχ andba is a 2-form onR2n. Therefore,R2n can be split as a sum of a space in which
ba is non-degenerate and its kernel. Consequently there exist (non-uniquely determined)
coordinates such thatσ = (ρ, τ ) with (ρ, 0) ∈ Kerba and

B(σ, σ ′) = �(σ)�(σ ′)
�(σ + σ ′) eba(σ,σ

′) �(σ ) = eχ(σ) ba(σ, σ
′) = µ(τ ∧ τ ′) (2.4)

for someµ ∈ C. Consequently, if the dual splitting of the phase-space coordinates is
z = (x, y), then it is easily seen that functions ofx only—in other words functions which
satisfy bija (∂if ) = 0—belong to the centre of(F (0), ?B). On the other hand, it is easy
to see that by (2.4), non-degeneracy ofba implies that the?B-algebra has a trivial center.
Thus, the above results can be summarized in

Theorem 1. Any ?B-associative algebra, having a trivial centre, and for whichB(σ, σ ′) is
an entire analytic function without zeros, is a generalized Moyal algebra (1.6) and (1.8),
hence by (1.10) it is isomorphic to the Moyal algebra defined by (1.6) and (1.8) with� = 1.

As a final remark we notice that forba non-degenerate, the extension (2.1) ofR2n by
C∗ is the direct product ofR∗ with the Heisenberg group, a fact following from (2.1) in
view of (2.1) ([26], section 15, particularly (15.2)).
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3. The characterization of the[ , ]A-Lie algebras

We next turn to the study of the Lie algebras defined by (1.7), i.e. to the study of (1.6),
assuming that constants annihilate the Lie product, i.e. (1.12) holds, or equivalently

A(0, σ ) = 0. (3.1)

Differentiating (1.16) with respect toσ i and puttingσ = 0 we get that∂1
i A(0, σ ) is linear,

i.e.

∂1
i A(0, σ ) = ωijσ j (3.2)

whereωij is antisymmetric and in this section we write∂ai A for the ith component of the
gradient ofA in the ath argument (a = 1, 2) and the summation convention is always
assumed. Differentiating (1.16) with respect toσ i andσ j at σ = 0 gives

(Xij (σ
′)+Xij (σ ′′))A(σ ′, σ ′′) = (aij (σ ′)+ aij (σ ′′)− aij (σ ′ + σ ′′))A(σ ′, σ ′′) (3.3)

where

aij (σ ) := ∂1
i ∂

1
j A(0, σ ) (3.3a)

Xij (σ ) := σ kωk(iδ`j)
∂

∂σ `
. (3.3b)

To simplify the notation by supressing indices whenever it is necessary, we introduce
symmetric parametersαij , βij and set

Xα := 1

2
αijXij (σ ) = σ kωkiαij ∂

∂σ j
(3.4a)

Zα(σ, σ
′) := Xα(σ)+Xα(σ ′) (3.4b)

aα := 1

2
αijaij (σ ) (3.4c)

âα(σ, σ
′) := aα(σ )+ aα(σ ′)− aα(σ + σ ′). (3.4d)

Thus (3.3) becomes

(ZαA)(σ
′, σ ′′) = (âαA)(σ ′, σ ′′). (3.5)

The crucial step is to notice that by (3.4a) and (3.4b)

[Xα,Xβ ] = Xγ (3.6a)

hence

[Zα,Zβ ] = Zγ (3.6b)

with

γ ij = αikωk`β j̀ − βikωk`α j̀ . (3.7)

Therefore, providedωij is non-degenerate, the(2n2 + n)-independent vector fieldsXij
generate a Lie algebra, which is identical to the Lie algebra of the symplectic group ofωij ,
since

(Xij (σ
′)+Xij (σ ′′))ωk`σ ′kσ ′′` = 0. (3.8)

SinceZα andZβ are derivations, applying [Zα,Zβ ] to A(σ ′, σ ′′) and using (3.6b) and (3.5),
we get

Zαâβ − Zβâα = âγ . (3.9)
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But, from (3.3b) and (3.4b) we have

Zα(σ
′, σ ′′)aβ(σ ′) = (Xα aβ)(σ ′)

Zα(σ
′, σ ′′)aβ(σ ′ + σ ′′) = (Xαaβ)(σ ′ + σ ′′)

hence (3.9) implies the linearity inσ of Xαaβ −Xβaα − aγ := σ ici(α, β). Differentiating
this with respect toσ k at σ = 0 and putting

ãα(σ ) := aα(σ )− σ i∂iaα(0) (3.10)

we finally get

Xα ãβ −Xβ ãα = ãγ . (3.11)

As a consequence of (3.11) and (3.6a), the system of first-order differential equations

Xijχ(σ ) = ãij (σ ) (3.12)

is locally integrable. Going back to (3.3) and using (3.12) we may rewrite it locally as

[Xij (σ
′)+Xij (σ ′′)]

(
�(σ ′ + σ ′′)
�(σ ′)�(σ ′′)

A(σ ′, σ ′′)
)
= 0 (3.13)

where�(σ) := eχ(σ). This means that�(σ ′+σ ′′)A(σ ′, σ ′′)/�(σ ′)�(σ ′′) is invariant under
the symplectic group ofωij (cf (3.8)), and therefore it is a function ofω(σ ′, σ ′′), since this
is the only bilinear invariant of the group onR2n × R2n (cf [27], appendix F). Therefore

A(σ, σ ′) = �(σ)�(σ ′)
�(σ + σ ′) h(ω(σ, σ

′)) (3.14)

for some functionh. Evidentlyh satisfies the Jacobi condition (1.16). Then by the lemma
in appendix B,h(x) = c sinhµx or h(x) = cx and therefore locallyA has the form (1.9).

To get (3.14)globally, we notice that the symplectic group ofωij acts transitively on
R2n − {0} and consequently constants are the only invariants it has. Therefore ifχa, χb are
local solutions of (3.12) in some intersecting open subsetsUa,Ub of R2n, then by (3.12),
in Ua ∩ Ub

Xij (χa − χb) = 0

henceχa = χb + κab for some constantκab. Now sinceR2n is simply connected we can
write in a consistent wayκab = κb − κa for all such pairsUa,Ub of an open covering of
R2n and thus redefiningχa to χa + κa = χb + κb we obtain a global solutionχ of (3.12),
henceh in (3.14) is globally defined as well.

Evidently from our results so far, it follows that if(F (0), [ , ]A) has a non-trivial centre,
then ω is degenerate. Conversely, supposeω has ad-dimensional kernel then as in the
previous section, we may writeσ = (ρ, τ ) with (ρ, 0) ∈ Kerω, and similarlyz = (x, y).
Take any functionf of x, then its Fourier transform is̃f (ρ)δ(τ ) and a direct calculation
shows that for any(ρ0, 0) ∈ Kerω

F(x) := f̃ (0)(d − iρ0 · x)− (∂kf̃ )(0)ρk0 =
∂

∂ρk
[f̃ (ρ)(ρk − ρk0) eiρ·x ]|ρ=0

is in the centre of the Lie algebra.
Therefore we summarize the results of this section.

Theorem 2. A [ , ]A-Lie algebra, for whichA is an entire analytic function and which has
a trivial centre, is a generalized Moyal Lie algebra (1.7) and (1.9) and is isomorphic to the
Moyal Lie algebra, via (1.10).

Theorems 1 and 2 establish the uniqueness of the Moyal and Poisson structures for
functions defined onR2n, in a more general setting than previous works.
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Appendix A

Here we show that (2.2) essentially implies (1.8). The following relations are easily obtained
from (1.15) (cf (1.11))

B(0, σ ) = B(σ, 0) = B(0, 0). (A1)

bs(σ, σ
′)− bs(σ ′, σ ′′)+ bs(σ + σ ′, σ ′′)− bs(σ, σ ′ + σ ′′) = ba(σ ′, σ ′′)− ba(σ, σ ′)

+ba(σ, σ ′ + σ ′′)− ba(σ + σ ′, σ ′′)
from which cyclic permutation and addition give

ba(σ + σ ′, σ ′′)+ ba(σ ′ + σ ′′, σ )+ ba(σ ′′ + σ, σ ′) = 0 (A2)

whereas the antisymmetric and symmetric parts inσ, σ ′′ give

ba(σ, σ
′)− ba(σ ′, σ ′′)+ ba(σ + σ ′, σ ′′)− ba(σ, σ ′ + σ ′′) = 0 (A3)

bs(σ, σ
′)− bs(σ ′, σ ′′)+ bs(σ + σ ′, σ ′′)− bs(σ, σ ′ + σ ′′) = 0. (A4)

Equations (A2) and (A3) imply the bilinearity ofba, henceba is an exterior 2-form on the
even-dimensional manifold0. Therefore,if it is non-degeneratethen there is a canonical
basis such that

ba(σ, σ
′) = µσ ′ ∧ σ µ ∈ C. (A5)

Acting on (A4) with∂2
σ ∂σ ′ −∂2

σ ′∂σ we easily obtain that(∂2
σ ∂σ ′ −∂2

σ ′∂σ )bs(σ, σ
′) is a function

of σ only, so that by the symmetry ofbs and (A1), we get(∂σ − ∂σ ′)∂σ ′∂σ bs(σ, σ ′) = 0,
which is readily integrated. Finally, by using (A1) in (A4) withσ ′ + σ ′′ = 0 and the
symmetry ofbs , the solution takes the form

bs(σ, σ
′) = −χ(σ + σ ′)+ χ(σ)+ χ(σ ′). (A6)

This together with (A5) and (1.11) show thatB(σ, σ ′) is of the form (1.8), which was to
be proved. Whenba is degenerate, (A5) holds on0/Kerba.

Appendix B

Here we prove the following lemma used in section 3 with the notation introduced there.

Lemma. If A(σ, σ ′) = h(ω(σ, σ ′)) whereω is a 2-form, is an entire analytic function and
it satisfies (1.16) and (1.17), then ifA is not identically zero,h(x) is eitherc sinhµx or cx,
µ, c being constants.

Proof. Puttingω(σ, σ ′) = x, ω(σ ′, σ ′′) = y, ω(σ ′′, σ ) = z, (1.16) becomes

h(x − z)h(y)+ h(y − x)h(z)+ h(z − y)h(x) = 0.

Differentiating with respect toz at z = 0, we find

h′(0)h(y − x) = h(y)h′(x)− h′(y)h(x).
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The caseh′(0) = 0 is readily excluded, since in this case, the previous equation implies
thath(x) = 0, given thath is odd inx. Puttingh̃(x) := h(x)/h′(0) we get

h̃(x + y) = h̃(y)h̃′(x)+ h̃′(y)h̃(x).
Differentiating this successively with respect tox andy and equating the results, we get

h̃(y)h̃′′(x) = h̃′′(y)h̃(x).
If h′′(x) is not identically zero in any open region, then

h̃′′(x)

h̃(x)
= h̃′′(y)

h̃(y)
=:µ = constant

everywhere† and the result follows. If̃h′′(x) = 0 in an open region, thenh(x) = cx and
by the analyticity ofA this holds everywhere (cf the proof of theorem 2.11 in [19]).�
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[12] Krüger J G and Poffyn A 1976Physica85A 84
[13] O’ Connell R F and Wigner E P 1981Phys. Lett.85A 121

Jagannathan R, Simon R, Sudarshan E C G and Vasuderan R 1987Phys. Lett.A 120 161
Davidovíc D M and Lalovíc D 1992Physica182A 643

[14] Vey J 1975Comm. Math. Helv.50 421
[15] Bayen F, Flato M, Fronsdal C, Lichnerowicz A and Sternheimer D 1978Ann. Phys. (NY)110 61
[16] Lichnerowicz A 1980Lecture Notes in Mathematics 775(New York: Springer) p 105
[17] DeWilde M and Lecompte P B A 1983Lett. Math. Phys.7 487
[18] Flato M, Lichnerowicz A and Sternheimer D 1976CR Acad. Sci. ParisA 283 19
[19] Arveson W 1983Comm. Math. Phys.89 77
[20] Fletcher P 1990Phys. Lett.248B 323
[21] Gracia-Bond́ıa J M and V́arilly J C 1988J. Phys. A: Math. Gen.21 L879

Várilly J C and Gracia-Bondı́a J M 1989Ann. Phys. (NY)190 107
[22] Galetti D and de Toledo Piza A F R 1988Physica149A 267
[23] Alcalde C 1990J. Math. Phys31 2672

Figueroa H, Gracia-Bondı́a J M and V́arilly J C 1990J. Math. Phys.31 2664
Gracia-Bond́ıa J M and V́arilly J C 1995J. Math. Phys.36 2691

† Notice that in this case, by the analyticity ofh′′ its zeros are accumulations points of points where it does not
vanish, and the above equation follows by continuity.



4866 C Tzanakis and A Dimakis

[24] Bidegain F and Pinczon G 1996Comm. Math. Phys.179 295
Bidegain F and Pinczon G 1995Lett. Math. Phys.33 231
Bakas I and Kakas A 1987J. Phys. A: Math. Gen.20 3713
Landsman N P 1993Rev. Mod. Phys.5 775

[25] Jacobson N 1984Basic Algebravol II (Delhi: Hindustan Publishing)
[26] Guillemin V and Sternberg S 1984Symplectic Techniques in Physics(Cambridge: Cambridge University

Press)
[27] Fulton W and Harris J 1991Representation Theory. A First Course(New York: Springer)


