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Abstract. Uniqueness up to isomorphism, of the Moyal product and bracket of functions on
R?* as associative and Lie deformations of the ordinary product and Poisson bracket, is known
to follow under additional hypotheses. Using an integral formalism we show here that this result
holds without these hypotheses.

1. Introduction

It is well known that quantum operators can be mapped to phase-space functions and vice
versa, in many different ways, depending on the ordering rule chosen for the operator
to which the monomialy” p™ is mapped (see e.g. [1]). Originally this was done by
the Weyl transformation corresponding to a symmetric ordering [2]. The inverse of
this mapping, the Wigner transformation, was originally devised in order to formulate
guantum expectation values as classical averages on the phaselspmdcthe system

under consideration [3]. Since the work of Moyal [4], who showed the relation between
these two mappings, many other ordering rules have been considered (see e.g. [5,6]),
corresponding to some generalization of the Wigner transformation, or equivalently, of the
Weyl symmetric orderingdepending on the physical problem under considerafgse e.g.

[5] for a discussion of the advantages of different choices of ordering in different problems).
This is due to the fact that such transformations (see (1.1) and (1.2) below) make possible
a phase-space formulation of quantum theory, which has been proved to be convenient in
a wide variety of domains: from quantum optics [7], kinetic and transport theory [8], and
scattering problems ([9, 5 section 11.1] and references therein), to string theory [10], and the
study of chaotic and ergodic behaviour in quantum systems ([5] section 11.2 and references
therein). A large class of such transformations is given by (e.g. [1§11])

~ 1 - N
Q. A(g, p) = Q,(A) = A= &) [da Q(o)A(c) €+ (1.1)
T n
where we use the following notation: phase-space coordirngtgs) =:z; corresponding
quantum operatorgj, p = —ih(d/0q)) =: Z; quantum mechanical operatots phase-space
functions A(q, p); Fourier transform
1

A, &) = /dz AR o=, 6).

(2m)"

§ It can be shown that any linear transformation of quantum operators to phase-space functions, which is phase-
space translation invariant is the inverse of (1.1). The calculations will not be given here, but see [12], (15).
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4858 C Tzanakis and A Dimakis
Here and in what follows we consider a-Bimensional flat phase-spade,= R?" where

o -z denotes its scalar product, afdo) is assumed to be an entire analytic functiorvof
without zeros. Therﬂ;1 exists formally and in Dirac notation it is given by

~ 1 , A
14— Aqp = [dadidte T oG- p-p)a ~tidlgd + 1) (12)

where

1 goe in

= 20y /da 20) po= g (1.3)
For @ =1, (1.1) and (1.2) give the Weyl and Wigner transformations respectively ([2, 3])
so that in the general case we may call them generalized Weyl and Wigner transformations
(GWT) respectively. SometimesA in (1.2) is called a smoothed Wigner distribution,
corresponding toA with smoothing kernek, since it has all the basic properties of a
Wigner distribution under quite general conditions (by (142} the convolution ofv with
the Wigner transform ofd). Therefore such distributions have also been considered in
guantum statistical mechanics, especially in connection with the question of whether they
can be interpreted as probability densities whets a density matrix, specifically if they
are non-negative (a condition violated in general by Wigner distributions) [13].

On the other hand, it is well known that a GWT induces on the vector spacg°of
phase-space functiorf§(I"), the structure of an associative, in general non-Abelian algebra,
and of a Lie algebra via

[ ra = Q7 (Q () (9)) (1.4)
1

[f,g]91=7(f*wg—g*g d (1.5)
i

respectively, withf, g € F(I'). For Q2 = 1 (1.4) and (1.5) give the Moyal product and
bracket denoted by, [, ], [4]. In the classical limitu — 0, the latter reduces to the Poisson
bracket.

Equations (1.4) and (1.5) can explicitly be written as

1 ~ . ,
(f *@ 8)(2) = @ / do do’ f(0)g(c")B(o, o) €172 (1.6)
1 ~ ) ,
610 = f do do’ f(0)G(0")Alo, ') €7+ 1.7
where

B(o,0') = $@)R(@) grone (1.8)
Qo +0')

Al 0"y = Q(0)Q(c’) sinh(uo’ A o) (1.9)
Qo +0) n

with o’ Ao:= J;jo"'o/, whereJ;; is the canonical symplectic matrix &', that is

_ 0 (%)
/= (—(%) 0 )

These imply that the mapping,

f— U WU = / do Qo) f(0) € (1.10)
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is an algebra and Lie-algebra isomomorphism(BtI'), xq, [, ]o) and (F(T), x, [, DT-

Therefore, although (1.6) and (1.7) define binary operations of functions in classical
phase-space with different physical interpretations that are very useful in various problems
of quantum physics (see the previous references), the underlying abstract algebraic structure
is independent of2. Thus the question naturally ariseshether more general binary
operations are defined via (1.6) and (1.7), which are respectively an associative product and
a Lie product and for which the corresponding kernels are not of the form (1.8) and (1.9)
and if so, to characterize the corresponding algebras.

It is the aim of this paper to study this problem in its general form. Special cases have
been treated in the literature. To see thig introduce the notatiorg, [,]14 for (1.6) and
(1.7)with B, A not given a prioriby (1.8) and (1.9), assuming that

() B, A are entire analytic functions of their arguments @tas no zeros, so that for
some entire functioth (o, o’) with b, (o, o) (respectivelyp, (o, ¢’)) symmetric (respectively
antisymmetric) part

B(0,0') = @) — g0 ghu(@o) (1.11)
(ii) constants are in the centre of the Lie algebra, i.e.
[f,1]a =0 for all f € F(I). (1.12)

DevelopingA in a power series, we formally get

+00 +00 1

[f. la(x) = ZZZZ@,M@;B; T)@5957 e (1.13)

r=1 s=1 j=0 k=0

wherer, s, j, k € N* are differentiation indices, each sum abbreviateg-éold summation
andb,; , are given in terms of the derivatives dfat 0. A similar expression is obtained
for f xp g.

For b a polynomial a characterization of theg-algebras has been given by Vey ([14]
section 1), which shows that in this cagk8) is essentially unique In section 2 and
appendix Awe will showby elementary means, thttis result remains valid wheh is an
entire function

Vey also considered on arbitrary symplectic manifolds, deformations of the Poisson-Lie
algebra ofC*°-functions for which

by = :o for |r| # |s| or || = |s| = 2m (1.1

)»mbszr]_,jk for rl=|s|=2m+1 reC

with |r| = ry1+---+r, etc so that the coefficient &f" in (1.13) is a bidifferential operator
of odd order with principal symbol identical to that of the Poisson bracket defined by
the symplectic structure (Vey deformations [14], section 4, [15], p 74, [16], section 7).
He showed that such essential (i.e. non-isomorphic to the original Poisson-Lie algebra)
deformations exist as long as the third de Rahm cohomology is trivial([14], p 446). This
restriction was later removed ([17]). On the other hand Lichnerowicz, Flato, Sternheimer

1 From this it follows that a necessary and sufficient condition fgg [to reduce to the Poisson bracket, given
Qg
that (g, p) = (4, p), is that lim, .0 Q2(0) = Qo = 1. Then
Q Qo(o’
||m A(o, g) M /
n—0 Qo(o +0’)

and (1.10) withQo, replacing?, is a Lie algebra isomorphic with the Poisson Lie algebra. We may call such
algebrasgeneralized Poisson Lie algebraasnd consider them as limits of generalized Moyal algebras. We agree
to include them in (1.9) fopr = 0, and for the sake of brevity we will use only the term Moyal Lie algebra.
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and coworkers proved thidtthe manifold admits a flat symplectic connection (&%), then

the only non-trivial such deformation which is a formal function of the corresponding Poisson
bracket, is the Moyal bracketefined via the symplectic structure and this connection ([18],
theorem 1, [15], theorem 5, [16], section @)he restriction to the algebra of polynomials
with complex coefficients in a symplectic vector space, implies that a sufficient condition
for the deformation to be a function of the Poisson bracket, isttreatleformed bracket is
invariant under all affine contact transformatio(f49], theorem 1.3), hence the uniqueness
of the Moyal bracket follows again ([19], theorem 2.11). A similar uniqueness result holds
for associative deformations as well ([19], theorem 3.5). The uniqueness of the Moyal
bracket as a deformation of the Poisson bracket was shown to hold without the above
conditions, only in the case @?2, by substituting (1.13) to the Jacobi identity and solving
the resulting recurrence relations for the ([20]; however, the proof was made explicit
only under (1.14) and it does not seem to be easily generalizRd'isince the calculations
become too complicated).

To the best of our knowledge, further work in this field has been concerned mainly with
the development of analytical aspects of the Moyal structure of appropriately defined spaces
of functions or distributions and applications to quantum physics; for instance, the phase-
space description of spin systems [21], the quantization of classical conditionally periodic
systems [22] or, more generally, of systems with a non-Euclidean phase space, [23, 34].

However important, the above beautiful considerations leave unansweregtrnieal
question of the characterization of thg [-algebras irR?", since theypresupposen the one
hand the existence of a symplectic structure on the manifold and on the other hand (1.14). It
is perhaps interesting th#tie existence of a symplectic form and the invariance of the
bracket under the corresponding symplectic group follow from the Jacobi identity,dlene
that the latter alone implies that in (1.7) is given by (1.9), hence (up to isomorphism)
uniqueness of the Moyal bracket follows as well. This is the subject of section 3.

More precisely, using (1.6) and (1.7) we get

1
fxp (g*xp h)(z) = W

xB(o",0"\B(c" +0',0) f(0)g(c)h(c")

1 . i
— 4 /" Ao+o'+0")z
[f.[g, h]ala(z) = 20 /do do’'do” €

xA(o,0' +0")A(0',6") f(0)g(c (")
hence associativity and the Jacobi identity are respectively found to be equivalent to

/ do do’ do” g@to' o)z

B(o,0)B(oc +0',6") = B(o,06’' +0")B(c’,0") (1.15)
A(o,0' +0"NA(0', 6"+ A(c', 0" +0)A(c”,0)+ A(c”,0 +0")A(0,0") =0 (1.16)
A(o,0") = —A(0’, 0). (1.17)

In the rest of the paper we show by quite simple (sometimes even elementary) methods that
essentially the only solutions of these functional relations are respectively (1.8) and (1.9).

Thus, up to isomorphism, the uniqueness of the Moyal product and bracket is proved in a

more general setting than previously.

2. The characterization of thexg-algebras

In this section we will show that (1.15) essentially implies (1.8)—the converse is trivial.
Starting from (1.11), we may remark that the special case whisna polynomialwithout



Uniqueness of the Moyal structure 4861

constant term, was considered long ago by Vey, who showed using cohomological arguments
that b, is necessarily bilinear and that it determines uniquely suct;-algebra, up to
isomorphism ([14], section 1, proposition 2 and its corrolary).

In the following, using similar argumentaje show that the restriction to a polynomial
function forb is not necessarylIn fact, if we consider the extensiah of the translation
group (R?", +) by the multiplicative grougC*: = C — {0}, i.e. a short exact sequence

1->C*—>E—>R”"—>0
then by writing (o, ¢) for an element off and defining
(0,8)(0,¢N)i= (0 + 0, B(o,0")¢¢) (2.1)

we see that associativity of (2.1) is equivalent to (1.15) (cf [25], section 6.10, [14], (4), [10],
(6)). Thus the determination a8, or for that mattemw, is equivalent to the determination

of all equivalence classes of extensiong®&f”, 4+) by C*, which is in 1-1 correspondence
with the second cohomology grou?(R?", C*) (e.g. [25], theorem 6.15). In fact given
(1.11), equation (1.15) becomes

b(o',6")=b(c +0',6")+b(o,6’' +5")—b(o,0") =0. (2.2)

It is not difficult to see that sincR? acts trivially onC*, (2.2) says thab is a coboundary
(8b)(0,0',0") = 0 of the complexC (R?*, C*) of complex-valued functions without zeros,
on R?)* k = 0,1,2,.... Thusb is determined up tdy, for somey € CYR?, C*).
Evidently

6x)(0,0") = x(0') — x(o + o) + x(0). (2.3)

In view of the above remarks, isomorphic classes gphlgebras are in 1-1 correspondence
with the elements off2(R?", C*). It is interesting to notice that2.2) can be solved by
elementary meansThis is done in appendix A, where we show that= §x for some 1-
cochainy andb, is a 2-form onR?*. ThereforeR?* can be split as a sum of a space in which

b, is non-degenerate and its kernel. Consequently there exist (non-uniquely determined)
coordinates such that = (p, ) with (p, 0) € Kerb, and

_ Q(0)Q(0")

Boo)= G0N g@ e peo)=ucat)  (24)

for someu € C. Consequently, if the dual splitting of the phase-space coordinates is
z = (x,y), then it is easily seen that functions ofonly—in other words functions which
satisfy b/ (3; f) = 0—belong to the centre of F(I"), xz). On the other hand, it is easy

to see that by (2.4), non-degeneracybpfimplies that thexz-algebra has a trivial center.
Thus, the above results can be summarized in

Theorem 1 Any xg-associative algebra, having a trivial centre, and for which, ¢') is
an entire analytic function without zeros, is a generalized Moyal algebra (1.6) and (1.8),
hence by (1.10) it is isomorphic to the Moyal algebra defined by (1.6) and (1.8)anthl.

As a final remark we notice that fdr, non-degenerate, the extension (2.1)R3f by
C* is the direct product oR* with the Heisenberg group, a fact following from (2.1) in
view of (2.1) ([26], section 15, particularly (15.2)).
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3. The characterization of the[,]4-Lie algebras
We next turn to the study of the Lie algebras defined by (1.7), i.e. to the study of (1.6),
assuming that constants annihilate the Lie product, i.e. (1.12) holds, or equivalently
A0,0) =0. (3.1)
Differentiating (1.16) with respect to’ and puttingc = 0 we get that!A(0, o) is linear,
ie.
3rA0, 0) = w;jo’ (3.2
wherew;; is antisymmetric and in this section we wrid¢A for the ith component of the

gradient of A in the ath argument { = 1,2) and the summation convention is always
assumed. Differentiating (1.16) with respectstoands’ ato = 0 gives

(Xij(0") + Xij(e")A(0', 0") = (aij(6") + aij(c") — a;; (6" + ") A(0’, 0") (3.3)
where
aij(0) 1= 0;9}A(0, o) (3.39)
d

Xij(o):= oka)k(,-éf)w.

To simplify the notation by supressing indices whenever it is necessary, we introduce
symmetric parameterg”’, g/ and set

(3.30)

1 ij ij 0
Xyi= éan,vj(cr) =kak,-ajﬁ (3.4a)
Zy(o, G/) 1= Xo(o) + Xa(a/) (34b)
1 ..
ay .= éa"’aij (o) (3.4c)
dy(0,0") = ay(0) + ag(0') —ay (o + o). (3.4d)
Thus (3.3) becomes
(ZyA)(0',0") = (4, A) (0’ 0"). (3.5
The crucial step is to notice that by (34and (3.4)
[Xo, Xg]l = X, (3.69)
hence
[Zy. 24l = Z, (3.60)
with
]/ij = C{ika)kgﬂzj — ,Bik(,()kg()lgj. (37)

Therefore, providedy;; is non-degenerate, then? + n)-independent vector field¥;;
generate a Lie algebra, which is identical to the Lie algebra of the symplectic grauip, of
since

(Xij(0") + Xij (") awyeo """ = 0. (3.8)

SinceZ, andZ are derivations, applyingZ,, Zg] to A(s’, ¢”) and using (3.6) and (3.5),
we get

Zabiy — Zpty = . (3.9)
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But, from (3.3) and (3.4) we have
Zy(0',0")ag(0") = (Xq ap) (o)
Zy(0',0")ag(0’ +0") = (Xeap) (0" + ")

hence (3.9) implies the linearity ian of X,as — Xgas — a, 1= o'ci(a, B). Differentiating
this with respect tar* ato = 0 and putting

Ay (0) = ay(0) — o' 8;a,(0) (3.10)
we finally get

Xydpg — Xpay = a,. (3.11)
As a consequence of (3.11) and @.6the system of first-order differential equations

Xijx (o) = a;j(o) (3.12)
is locally integrable. Going back to (3.3) and using (3.12) we may rewrite it locally as

[Xij(0") + Xij(0)] (SWA(U/, G”)) =0 (3.13)

whereQ (o) : = €@, This means tha® (¢'+c")A(c’, 6”)/ Q(c")2(c") is invariant under
the symplectic group ab;; (cf (3.8)), and therefore it is a function af(c’, "), since this
is the only bilinear invariant of the group & x R?" (cf [27], appendix F). Therefore
Ao, o'y = 2@RE@)

Qo +0')
for some function:. Evidently i satisfies the Jacobi condition (1.16). Then by the lemma
in appendix B,i(x) = c¢sinhux or h(x) = cx and therefore locally has the form (1.9).

To get (3.14)globally, we notice that the symplectic group of; acts transitively on
R?" — {0} and consequently constants are the only invariants it has. Therefgye)if are
local solutions of (3.12) in some intersecting open subsgtd/, of R, then by (3.12),
inU,NU,

h(w(o,0")) (3.14)

Xij(xa —x») =0
hencey, = x» + ka5, fOr some constant,,. Now sinceR? is simply connected we can
write in a consistent way,, = «, — «, for all such pairsU,, U, of an open covering of
R?" and thus redefining, to x, + k., = x» + k, We obtain a global solutioy of (3.12),
hencer in (3.14) is globally defined as well.

Evidently from our results so far, it follows that(#(I'), [, ]4) has a non-trivial centre,
then w is degenerate. Conversely, suppeséas ad-dimensional kernel then as in the
previous section, we may write = (p, t) with (p, 0) € Kerw, and similarlyz = (x, y).
Take any functionf of x, then its Fourier transform ig(p)s(r) and a direct calculation
shows that for anypo, 0) € Kerw

~ . ~ a - )
F(x):= f(0)(d —ipo-x) — 3 F)0)p§ = a—pk[f(p)(p" — 08) €71l =0

is in the centre of the Lie algebra.
Therefore we summarize the results of this section.

Theorem 2 A [, ]4-Lie algebra, for whichA is an entire analytic function and which has
a trivial centre, is a generalized Moyal Lie algebra (1.7) and (1.9) and is isomorphic to the
Moyal Lie algebra, via (1.10).

Theorems 1 and 2 establish the uniqueness of the Moyal and Poisson structures for
functions defined ofiR?", in a more general setting than previous works.
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Appendix A

Here we show that (2.2) essentially implies (1.8). The following relations are easily obtained
from (1.15) (cf (1.11))

B(0,0) = B(c, 0) = B(0, 0). (A1)
by(o,0") —bs(o’,0") +bs(o +0',0") —bs(0,0" +0") =bu(0',0") — by(0,0")
+by(0, 0" +0") —by(o +0',6")

from which cyclic permutation and addition give

b,(oc +0',6")+by(c'+0",0)+b,(c" +0,0') =0 (A2)
whereas the antisymmetric and symmetric parts,ia” give

b.(c,6") —b,(0',6")+bs(c +0',06") —b,(0,6' +c")=0 (A3)

by(o,0") — by(c’,06") + bs(c +0',06") — bs(0,6" +0") =0. (A4)

Equations (A2) and (A3) imply the bilinearity @f,, henceb, is an exterior 2-form on the
even-dimensional manifold’. Therefore,if it is non-degenerat¢hen there is a canonical
basis such that

b,(0,0") = no’' Ao weC. (A5)

Acting on (A4) with 923, — 32,8, we easily obtain thatd?d, — 32,9, )b, (o, o) is a function
of o only, so that by the symmetry @&f;, and (Al), we get(d, — 3,/)3y95bs(c,0’) = 0,
which is readily integrated. Finally, by using (Al) in (A4) wit' + ¢” = 0 and the
symmetry ofb;, the solution takes the form

bs(0,0') = —x(o +0") + x (o) + x (). (A6)

This together with (A5) and (1.11) show th&{o, ¢’) is of the form (1.8), which was to
be proved. Whermb, is degenerate, (A5) holds dryKerb,.

Appendix B

Here we prove the following lemma used in section 3 with the notation introduced there.

Lemma If A(o,0’) = h(w(o, 0’)) wherew is a 2-form, is an entire analytic function and
it satisfies (1.16) and (1.17), thenAfis not identically zerok(x) is eitherc sinhux or cx,
u, ¢ being constants.
Proof. Puttingw(o,0’) = x, w(c’,06”) =y, w(c”,0) = z, (1.16) becomes
h(x —2)h(y) + h(y — x)h(z) + h(z — y)h(x) = 0.
Differentiating with respect ta atz = 0, we find
R (O)h(y — x) = h(y)h'(x) — B’ (y)h(x).
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The casen’(0) = 0 is readily excluded, since in this case, the previous equation implies
thath(x) = 0, given thatz is odd inx. Puttingi(x) := h(x)/h’(0) we get
h(x +y) = hO)R () + 7' (Ph(x).
Differentiating this successively with respectiandy and equating the results, we get
hO)R' (x) = " ()h().
If 2”(x) is not identically zero in any open region, then

h:/(x) _ w =:u = constant
h(x) h(y)

everywheré and the result follows. I2”(x) = 0 in an open region, theh(x) = c¢x and
by the analyticity ofA this holds everywhere (cf the proof of theorem 2.11 in [19]).00
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